CNN Models

U-net

The U-Net.

layers

input

output

conv1

(B, H, W, 1)

(B, H, W, cs)

conv2

(B, H, W, cs)

(B, H, W, cs)

maxpl1

(B, H, W, cs)

(B, H/2, W/2, cs)

conv3

(B, H/2, W/2, cs)

(B, H/2, W/2, 2cs)

conv4

(B, H/2, W/2, 2cs)

(B, H/2, W/2, 2cs)

Note

  • B: batch size

  • cls: number of class

  • cs: number of convolution kernel per layers

LRCS-Net

The LRCS-Net is a trimed model derived from Seg-Net.

Encoder:

layers

input

output

conv1

(B, H, W, 1)

(B, H, W, cs)

maxpl1

(B, H, W, cs)

(B, H/2, W/2, cs)

conv2

(B, H/2, W/2, cs)

(B, H/2, W/2, 2cs)

maxpl2

(B, H/2, W/2, 2cs)

(B, H/4, W/4, 2cs)

conv3

(B, H/4, W/4, 2cs)

(B, H/4, W/4, 4cs)

maxpl3

(B, H/4, W/4, 4cs)

(B, H/8, W/8 4cs)

conv4sigm

(B, H/8, W/8, 4cs)

(B, H/8, W/8, 4cs)

Decoder:

layers

input

output

conv5a

(B, H/8, W/8, 4cs)

(B, H/8, W/8, 4cs)

conv5b

(B, H/8, W/8, 4cs)

(B, H/8, W/8, 4cs)

up1

(B, H/8, W/8, 4cs)

(B, H/4, W/4, 4cs)

conv6a

(B, H/4, W/4, 4cs)

(B, H/4, W/4, 2cs)

conv6b

(B, H/4, W/4, 2cs)

(B, H/4, W/4, 2cs)

up2

(B, H/4, W/4, 2cs)

(B, H/2, W/2, 2cs)

conv7a

(B, H/2, W/2, 2cs)

(B, H/2, W/2, 2cs)

conv7b

(B, H/2, W/2, 2cs)

(B, H/2, W/2, 2cs)

up3

(B, H/2, W/2, 2cs)

(B, H, W, 2cs)

conv8a

(B, H, W, 2cs)

(B, H, W, cs)

conv8b

(B, H, W, cs)

(B, H, W, cs)

conv8c

(B, H, W, cs)

(B, H, W, cls)

Note

  • B: batch size

  • cls: number of class

  • cs: number of convolution kernel per layers